Project: FP7-PEOPLE-IAPP-2008  Marie Curie Action 230715

 

Publications

 

[1] A.Kumar, S.Gu and S Kamnis, Study of Impingement of Hollow ZrO2 Droplets onto a Substrate, Surface and Coating Technology (2012), DOI 10.1016/j.surfcoat.2012.08.061

 

[2] A.Kumar, S.Gu, Modelling impingement of hollow metal droplets onto a flat surface, International Journal of Heat and Fluid Flow, 37: 189-195 (2012)

 

[3] A.Kumar, S.Gu and S.Kamnis, Simulation of impact of a hollow droplet on a flat surface, Applied Physics A: Materials Science & Processing, 109 (1): 101-109 (2012)

 

[4] H.Tabbara and S.Gu, A Study of Liquid Droplet Disintegration for the Development of Nanostructured Coatings, AIChE Journal, 58 (11): 3533-3544 (2012)

 

[5] N.Zeoli, H.Tabbara and S. Gu, Three-dimensional simulation of primary break-up in a close-coupled atomizer, Applied Physics A: Materials Science & Processing, 108(4): 783-792 (2012).

 

[6] H.Tabbara, S.Gu, Modelling of Impingement Phenomena for Molten Metallic Droplets with Low to High Velocities, International Journal of Heat and Mass Transfer 55 (7-8): 2081-2086 (2012).

 

[7] H.Tabbara, S.Gu, D.G. McCartney, T.S. Price, P.H. Shipway, Study on process optimisation of cold gas spraying, Journal of Thermal Spray Technology, 20(3) 608-620 (2011).

 

[8] H.Tabbara, S.Gu, D.G. McCartney, Computational modelling of titanium particles in warm spray, Computers & Fluids, 44(1) 358-368 (2011).

 

[9] H.Tabbara, S.Gu, Numerical study of semi-molten droplet impingement, Applied Physics A: Materials Science & Processing, 104:1011–1019 (2011).

 

[10] N.Zeoli, H.Tabbara, S.Gu, CFD modelling of primary breakup during metal powder atomization, Chemical Engineering Science, 66: 6498-6504 (2011).

 

[11] N.Kishore and S.Gu, Momentum and heat transfer phenomena of spheroid particles at moderate Reynolds and Prandtl numbers, International Journal of Heat and Mass Transfer, 54(11-12) 2595-2601 (2011).

 

[12] N.Kishore, S.Gu, Effect of Blockage on Heat Transfer Phenomena of Spheroid Particles at Moderate Reynolds and Prandtl Numbers, Chemical Engineering Technology, 34(9) 1551–1558 (2011).

 

[13] J.Bruchmüller B.G.M. van Wachem, S.Gu, K.H. Luo, Modelling discrete fragmentation of brittle particles, Powder Technology 208: 731–739 (2011).

 

[14] S.Kamnis, S.Gu and M.Vardavoulias, Numerical study to examine the effect of porosity on in-flight particle dynamics, Journal of Thermal Spray Technology, 20(3) 630-637 (2011).

 

[15] S.Kamnis, S.Gu and M.Vardavoulias, The influence of powder porosity on the bonding mechanism at the impact of thermally sprayed solid particles, Metallurgical and Materials Transactions A 41(13): 3517-3524 (2010).

 

[16] N.Kishore and S.Gu, Wall Effects on Flow and Drag Phenomena of Spheroid Particles at Moderate Reynolds Numbers, Industrial and Engineering Chemistry Research, 49 (19): 9486-9495 (2010).

 

[17] J.Bruchmuller, S.Gu, KH.Luo and BGM van Wachem, Discrete Element Method for Multiscale Modelling, Journal of Multiscale Modelling 2 (2) 147-162 (2010).

 

[18] S.Kamnis, S.Gu, Study of in-flight and impact dynamics of non-spherical particles from HVOF guns, Journal of Thermal Spray Technology, 19(1-2) 31-41 (2009)

 

[19] S.Kamnis, S.Gu, T.J. Lu, C. Chen, Numerical Modelling the Bonding Mechanism of HVOF Sprayed Particles, Computational Materials Science, 46, 1038–1043 (2009).

 

[20] S.Gu, S.Kamnis, Bonding mechanism from the impact of thermally sprayed solid particles, Metallurgical and Materials Transactions A, 40(11): 2664-2674 (2009)

 

[21] S.Gu, S.Kamnis, Numerical Modelling of In-Flight Particle Dynamics of Non-Spherical Powder, Surface and Coating Technology, 203, 3485-3490 (2009).

 

[22] H.Tabbara, S.Gu, Computational Simulation of Liquid Fuelled HVOF Thermal Spraying, Surface and Coating Technology, 204(5): 676-684 (2009).